Electron Beam Direct Manufacturing (EBDM) On the F-35 Lightning II

Hank Phelps
Lockheed Martin Aeronautics

NC State Advanced Manufacturing & Logistics Symposium, Oct 17, 2013
Outline

- EBDM Process
- Benefits
- F-35 EBDM Qualification Efforts
- Other Programs Supporting EBDM Qualification
- Summary
Sciaky Electron Beam Direct Manufacturing

- **Deposit Weld Wire on Base Plate**
 - *High Deposition Rates*
 - 15 lbs/hr
 - *Closed Loop Control*
 - *Consistent Material Properties*

- **Weld Wire Feedstock**
 - *Special chemistry wire*

- **Very Large Part Capability**
 - 245” x 62” x 55” Build Envelope
Benefits of EBDM

- Minimal Tooling Required
- Cost Savings
 - *Up to 60%*
 - *Reduced BTF*
- Lead Time Savings
 - *Up to 80% vs Die Forgings*
EBDM Process Steps

NC Path Planning

Deposition

Finished Part

NC Machining
F-35 EBDM Qualification

F-35A
Conventional Takeoff and Landing (CTOL)

F-35B
Short Takeoff and Vertical Landing (STOVL) Capability

F-35C
Carrier Variant

© 2012 Lockheed Martin Corporation
F-35 EBDM Qualification Program

<table>
<thead>
<tr>
<th>Year</th>
<th>Business Case Dev</th>
<th>Trade Studies</th>
<th>Phase 1</th>
<th>M&P Specs</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Prod</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Materials Qualification Effort

• Deposition of Large Preforms
• Preforms
 – 11 Preforms
 – 270 lbs of Deposit
 – 3 Wire Sources
• Specimen Testing
 – 139 Test Coupons per Preform
 – Static Testing
 – DaDT Testing
 – Metallography

Ref: Needler, Steve, “F-35 Direct Manufacturing: Material Qualification Results” presented at Aeromat 2012 Conference
Material Qualification Testing

DM Material Qualification Test Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Replicates per</th>
<th>Preform</th>
<th>Test Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile</td>
<td>60 (x10) / 9 (x1)</td>
<td>609</td>
<td></td>
</tr>
<tr>
<td>Compression</td>
<td>12</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Bearing</td>
<td>8</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Shear</td>
<td>12</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Fatigue – Strain Controlled</td>
<td>12</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Fatigue – Crack Growth</td>
<td>12 (x10) / 3 (x1)</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Fracture Toughness</td>
<td>4</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Metallography</td>
<td>9 (x10) / 18 (x1)</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>9 (x10) / 2 (x1)</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Beta Transus</td>
<td>1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Spare Blanks</td>
<td>36</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>175 (x10) / 32 (x1)</td>
<td>1783</td>
<td></td>
</tr>
</tbody>
</table>
EBDM Design Allowables

Ti-6Al-4V ELI, BA: EBDM vs. Wrought

- Static Properties ~5% Lower
- Damage Tolerance Equivalent
F-35 EBDM Applications
Potential F-35 EBDM Applications

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Ht (in)</th>
<th>Wid (in)</th>
<th>Lg (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaperon Spar</td>
<td>12</td>
<td>13</td>
<td>118</td>
</tr>
<tr>
<td>Leading Edge Spar</td>
<td>4.2</td>
<td>6</td>
<td>73</td>
</tr>
<tr>
<td>Aft Spar</td>
<td>4.2</td>
<td>6</td>
<td>73</td>
</tr>
<tr>
<td>Root Rib</td>
<td>4.5</td>
<td>10</td>
<td>46</td>
</tr>
</tbody>
</table>
Next Step for F-35 EBDM

• Part Qualification & Business Case Update
 – Begin 1Q 2014
Other EBDM Programs

• Sciaky SBIR Studies
 – Commercialization of Technology –
 – Refined Closed Loop Control System
 – Supply Chain Integration –
 – Validated Industry’s Capabilities to Produce EBDM Components

• NDI of EBDM CRAD

• LM Missiles & Space Applications
EBDM Fabrication Studies (Sciaky SBIRs)

Notional Part

Trial Part
NDI of EBDM CRAD

- Administered by Concurrent Technologies Corporation
- Runs in Parallel to F-35 EBDM Qualification Pgm
- POP
 - Oct 2012 thru Jul 2014

- Objectives
 - Quantify
 - Capabilities of Existing NDI Methods
 - Effects of Surface Finish and HT Condition
 - Estimate NDI Impact on Final Part Cost & Lead Time
Representative EBDM Flaws

- Defects of Concern for NDI of EBAM Product Forms:
 - Porosity
 - Crack Like
 - Incomplete Fusion
 - Geometric
 - Undercut
 - Under fill
 - Inclusions
EBDM Grain Structure/HT Impacts NDI

Beads

Build Dir

Columnar Grains

>18dB Variation in Thru Transmission UT

“As Deposited”

“Post Beta HT”

Copyright 2013, Lockheed Martin Corporation. All rights reserved.
Approved for public release 9-20-13, JSF13-1070, AER201308020.
NDI of EBDM – UT Results

UT Response to FBH vs. Std

Delta dB from Std

Total Step Thickness (In)

-8 -6 -4 -2 0 2 4 6

12 to 15 dB Added for DAC for BA

#2 FBH - As Fab
#3 FBH - As Fab
#5 FBH - As Fab
#5 FBH - BA

Ultrasonic Inspection Capability (#3 FBH)
As Deposited Condition – 3”
BA Condition - ~1” (Est)

Copyright 2013, Lockheed Martin Corporation. All rights reserved.
Approved for public release 9-20-13, JSF13-1070, AER201308020.
EBDM Space Application

- Spacecraft Forward Bay Cover Deck
Summary

• **EBDM Process**
 - *Potential for Significant Cost & Lead Time Savings*
 - *Currently being Qualified for F-35 & Space Applications*
 - Process Specs & Design Allowables Established
 - Certification Testing Starts 1st Qtr 2014
 - *Candidate Applications*
 - Wing & Empennage Components

• **NDI of EBDM CRAD**
 - *Evaluating NDI Methods Required for EBDM*
Future Work

• **EBDM Process Refinement**
 – *Control Microstructure*
 – *Reduce Columnar Grain Formation*
 – *Improve NDI*
 – *Achieve Parity With Wrought Materials Properties*

• **Additional NDI Development**
 – *Economical*
 – *Production Viable*
Questions
Additive Mfg Sessions at Aeromat 2014

- June 16-19, 2014 @ Orlando FL
- Deadline for Abstracts is January 13, 2014

- AM Methods
 - Comparison of various AM methods and equipment

- AM Applications
 - Existing or planned use of AM in prototype or production applications

- Materials & Processes Used for AM
 - Aerospace alloys converted for AM
 - Secondary processing operations
 - heat treatment
 - surface finishing
 - NDI
 - repair

- Design Practices for AM
 - Best practices for AM designs